Visible Light Communication (VLC) for Cars

Takaya Yamazato, Nagoya University https://yamazato.nuee.nagoya-u.ac.jp/

IEEE Symposium on Computers and Communications (ISCC) Sunday, July 9 16:30 - 17:30 (Africa/Tunis) OWC Keynote: Visible light communication (VLC) for cars

Visible Light Communication (VLC) for Cars

Special thanks to:
Dr. Chedlia Ben Naila, Nagoya University, Japan (OWC co-chair)
Dr. Anna Maria Vegni, Roma Tre University, Italy (OWC co-chair)
Dr. Hanaa Abumarshoud, University of Glasgow, UK (OWC co-chair)
Dr. Habib M. Kammoun, University of Sfax, Tunisia (ISCC local organizing chair)

This presentation is partially supported bySuzuki FoundationOkawa Foundation of Information and Telecommunications

Takaya Yamazato, Nagoya University https://yamazato.nuee.nagoya-u.ac.jp/

IEEE Symposium on Computers and Communications (ISCC) Sunday, July 9 16:30 - 17:30 (Africa/Tunis) OWC Keynote: Visible light communication (VLC) for cars

Visible light communications for Cars

•

□ Brief history of LED and invention of blue LED Visible light communications (VLC), Image sensor communications (ISC) □VLC using high-speed camera High-speed image processing for automotive applications Vehicle to infrastructure visible light communication system Range estimation using POC ISC using rolling-shutter image sensor

Blue LED (innovation history)

"Incandescent light bulbs lit the 20th century; the 21st century will be lit by LED lamps."

1961 Robert Biard and Gary Pittman (TI) invented an infra-red LED.

1962 Nick Holonyak, Jr. (GE) invented a visible red light LED.

- 1970s Scientists succeeded in making LEDs that emit a cyan (pale green) light.
- 1980s Ultra-bright magenda (orange-red), orange, green, and yellow LEDs were produced.

But scientists realized that the emission of blue light was considerably difficult.

1961 Robert Biard and Gary Pittman (TI) invented an infra-red LED.

1962 Nick Holonyak, Jr. (GE) invented a visible red light LED.

> LEDU MAL UMIL A UYAH (PAIU SIVUI) light.

1980s Ultra-bright magenda (orange-red), orange, green, and yellow LEDs were produced.

Gallium nitride (GaN)

- Gallium nitride was the material of choice.
- Material was considered appropriate, but practical difficulties had proved enormous.
- No one could grow gallium nitride crystals of high enough quality

https://en.wikipedia.org/wiki/Gallium_nitride

Dr. Isamu Akasaki

1952	Graduated from the School of Science, Kyoto University Began working at Kobe Kogyo Corporation
1959	Research Associate, School of Engineering, Nagoya University
1964	Lecturer, School of Engineering, Nagoya University
1964	Received Doctorate of Engineering, School of Engineering, Nagoya University
1981	Professor, School of Engineering, Nagoya University
1992	Retirement from Nagoya University Professor, Meijo University Professor Emeritus, Nagoya
2004	University Professor at Nagoya University

https://en.nagoya-u.ac.jp/people/nobel/isamu_akasaki/index.html (2021/9/16)

Dr. Hiroshi Amano

1960	Born in the city of Hamamatsu, Shizuoka Prefecture
1979	Graduated from Shizuoka Prefectural Hamamatsu Nishi Senior Scho
1983	Graduated from the School of Engineering, Nagoya University
1985	Completed Master's Course of the Graduate School of Engineering, Nagoya University
1988	Completed All But Dissertation (ABD) for a PhD degree of the Graduate School of Engineering, Nagoya U
1988	Research Associate, School of Engineering, Nagoya University
1989	Acquired the Doctor of Engineering, Nagoya University
1992	Assistant Professor, Faculty of Science and Technology, Meijo Unive
1998	Associate Professor, Faculty of Science and Technology, Meijo Unive
2002	Professor, Faculty of Science and Technology, Meijo University
2010	Professor, Graduate School of Engineering, Nagoya University

https://en.nagoya-u.ac.jp/people/nobel/hiroshi_amano/index.html (2021/9/16)

1986 Profs. Akasaki and Amano were the first to create a high-quality GaN crystal.

End of 1980s, they made a breakthrough in creating a p-type layer.

1992 Profs. Akasaki and Amano were able to present their first diode emitting a bright blue light.

Without a blue LED, there is no white light

White light source implementation

Energy-efficient LED lights up the world brighter than ever.

https://visibleearth.nasa.gov/images/55167/earths-city-lights (2021/9/3)

Data acquired October 1, 1994 - March 31, 1995

https://earthobservatory.nasa.gov/features/NightLights/page3.php (2021/9/3)

2016

https://earthobservatory.nasa.gov/features/NightLights/page3.php (2021/9/3)

Light emitting data (LED)

Visible Light Communication (VLC)

1999 Proposed by Prof. Masao Nakagawa, Keio University

- Visible Light Communication Consortium 2001 (Chair : Prof. Shinichiro Haruyama, Keio University)
- 2014 Visible Light Communications Association 2023 JPC Optical Wireless Group (Chair: Prof.Yamazato)

http://www.vlcc.net/modules/xpage1/?ml_lang=en (2021/9/3)

http://www.sdm.keio.ac.jp/en/faculty/haruyama_s.html (2021/9/3)

Electromagnetic spectrum

	Class	Wavelength λ	Frequency f
Ŷ	Gamma rays	1 pm	300 EHz
ΗХ	Hard X-rays	10 pm	30 EHz
SX	Soft X-rays	100 pm	3 EHz
		1 nm	300 PHz
EUV	Extreme ultraviolet	10 nm	30 PHz
NUV	Near ultraviolet, visible	100 nm	3 PHz
		1 µm	300 THz
NIR	Near infrared	10 µm	30 THz
MIR	Mid infrared	100 µm	3 THz
FIR	Far infrared	1 mm	300 GHz
EHF	Extremely high frequency	1 cm	30 GHz
SHF	Super high frequency	1 dm	3 GHz
UHF	Ultra high frequency	1 m	300 MHz
VHF	Very high frequency	10 m	30 MHz
HF	High frequency	100 m	3 MHz
MF	Medium frequency	1 km	300 kHz
LF	Low frequency	10 km	30 kHz
VLF	Very low frequency	100 km	3 kHz
ULF	Ultra low frequency	1000 km	300 Hz
SLF	Super low frequency	10000 km	30 Hz
ELF	Extremely low frequency	100000 km	3 Hz

	75	0 nm	
	400	0 THz	~
	Radi	io was	se
blesou	nds	radio	をTV

30 300 3

KHZ

wavelength

VLF MF HF ELT ULF SLF 05 104 103 000 00 1 100 10 m KM

30 300 3

HR

frequency

VLC Transmitter In most cases, VLC uses LEDs for a transmitter.

- VLC signal modulation
 - On-off keying (OOK)
 - Pulse-width modulation (PWM)
 - Intensity modulation (IM)
 - Optical orthogonal frequency division multiplexing (optical OFDM)

On-off keying (OOK) The simplest form of modulation

Pulse-width modulation (PWM) The simplest form of modulation

VLC Transmitter In most cases, VLC uses LEDs for a transmitter.

IFD

Intensity modulation and direct detection (IM/DD) systems

01100110001010

Image sensor communications (ISC)

Image Sensor Communications (ISC)

Norio lizuka, Advisory Engineer, Casio

カシオ計算機「ピカリコ」 LED×カメラの可視光通信、"第3の測位技術"注目 https://news.aperza.jp/カシオ計算機「ピカリコ」-ledxカメラの可視光通信/ (閲覧:2022/12/12)

- Proposed by Mr. lizuka of Casio Co.
- Basically the same as optical camera communication (OCC) standardized in IEEE 802.15.7
- It has spatial separation characteristics:
 - Spatial separation characteristics enable spatial parallel transmission using LED arrays.
 - Easy tracking of the transmission source
 - Simultaneous communication and ranging (position estimation)

CMOS (complementary metal oxide semiconductor)

https://en.wikipedia.org/wiki/Active-pixel_sensor

- using row and column decoders, like a digital memory.

High-Speed Image Sensor as a Reception Device of VLC Signals

T. Yamazato, et al. "Vehicle Motion and Pixel Illumination Modeling for Image Sensor Based Visible Light Communication," IEEE JSAC, 2015.

No data

Spatial separation of sources Ability to process multiple sources Easy integration of both positioning and reception data

Noise sources (the sun, town lights....)

DATAA

DATA B

LED array transmitter and Image sensor receiver

Transmitter (3x3 LEDs alligned in a grid (LED array))

Spatial separation

Image sensor receiver can receive and process multiple transmitting sources.

Transmitter (3x3 LEDs alligned in a grid (LED array))

Receiver (Image sensor with 6x6 pixels, each image is sampled with the rate $2R_b$)

VLC using high-speed camera

iPhone 1080p 240 fps

Xperia 1080p 920 fps

How fast can we achieve? — Ideal case —

 $1920 \times 1080 \times 240$ fps $\times 12$ bit $\times 3$ colors

Considering Nyquist sampling (1/2)

$960 \times 540 \times 120 \text{ fps} \times 6 \text{ bit} \times 3 \text{ colors}$

Temporal

Dynamic range

I,II9,744,000 bps (I. Gbps)

1920 × 1080 × 920 fps × 12 bit × 3 colors

Considering Nyquist sampling (1/2)

 $960 \times 540 \times 460$ fps $\times 6$ bit $\times 3$ colors

4,292,352,000 bps (**4.3 Gbps**)

LED array: 500 Hz

High-speed Image Sensor

160 km/h

I. Ishii, et al, "High-frame-rate optical flow system," IEEE Trans. on Circuits and Systems for Video Technology, Jan. 2012.

Prof. Ishii, Hiroshima University

High-speed image processing for automotive applications

LED traffic light to vehicles (I2V-VLC)

LED pavement marker to vehicle (I2V-VLC)

V2X Visible Light Communication

LED tail lights to vechicle (V2V-VLC)

Vehicle-to-Infrastructure Visible Light Communications (V2I-VLC) System

T. Yamazato, et al. "Image Sensor Based Visible Light Communication for Automotive Applications," IEEE Communication Magazine, Jul., 2014.

Fast recognition of LED arrays

Two consecutive images

T. Yamazato, et al. "Image Sensor Based Visible Light Communication for Automotive Applications," IEEE Communication Magazine, Jul., 2014.

Y. Goto et al. "A New Automotive VLC System Using Optical Communication Image Sensor," IEEE Photonics Journal, Vol. 8, No. 3, June 2016.

How we estimate distance using only one camera

Estimation error [m] 5 1.5 1 1 Phase-only correlation (POC) result and Sinc function approximation Sinc-approximation $G_{12}(W_m + \delta_m, W_n + \delta_n) = 1$ $G_{12}(W_m, W_n) = \xi < 1$ 0.5 1.0 0.8 $G_{12}(W_m,W_n)=\xi$ 30 0.6 POC 0.4 0.2

109

-0.2

 $G_{k,k+1}(m,n) \simeq \operatorname{sinc}(m+\Delta_m)\operatorname{sinc}(n+\Delta_n)$ (2)

113 114

115

116

112

111

117 119 116 1 118 120

Pixel

Estimate the displacement in sub-pixel order

3

The range estimation error plots along with numerically obtained error curves assuming sub-pixel error. The curves labeled 2-pixel and 1-pixel are the case without POC while the curves labeled 0.5-pixel and 0.1-pixels are the case with POC. The black solid curve is the approximate curve of the range estimation (plots).

The range estimation error

ISC using Rolling-shutter image sensor

Rolling-shutter image sensor

Timing chart of rolling-shutter scheme

Achieving Successful VLC Signal Reception Using a Rolling Shutter Image Sensor While Driving at 40 km/h

52 S. Kamiya *et al.*, "Achieving Successful VLC Signal Reception Using A Rolling Shutter Image Sensor While Driving at 40 km/h," in *IEEE Photonics Journal*, vol. 15, no. 4, pp. 1-11, Aug. 2023, doi: 10.1109/JPHOT.2023.3287211.

Conclusion

□ Brief history of LED and invention of blue LED □ Visible light communications (VLC) Image sensor communications (ISC) □ VLC using high-speed camera High-speed image processing (eyes of robot) High-speed image processing for automotive applications Vehicle to infrastructure visible light communication system Successful audio signal transmission at driving speed of 30 km/h 55Mbps VLC signal transmission (faster than DSRC) Range estimation using POC Estimation error of less than 0.5 m from a 30-60 m range ISC using Rolling-shutter image sensor Successful VLC signal reception using a rolling shutter image sensor while driving at 40 km/h

Thank you and your questions or comments are welcome! https://yamazato.nuee.nagoya-u.ac.jp/

WORKSHOP CO-CHAIRS

Chedlia Ben Naila, Nagoya University, Japan

Takaya Yamazato, Nagoya University, Japan

Anna Maria Vegni, Roma Tre University, Italy

Hanaa Abumarshoud, University of Glasgow, UK Optical wireless communication (OWC) systems over terrestrial, space or underwater links are gaining much attention as cost-effective, sustainable and energy efficient candidates to meet the ever-increasing demand for capacity and quality for B5G/6G networks. Besides the compelling advantages of the high-power solid-state laser diodes for medium to long range applications, remarkable advances have been achieved in semiconductor sources such as light emitting diodes (LEDs) in visible light and ultraviolet wavelengths, multi-array light sources and detectors, tracking and steering. These advances provide huge potential for short/medium range wireless communication applications at low power and cost.

1st Workshop on Optical Wireless Communications (OWC'23) in association with **28th IEEE Symposium on Computers and Communications (ISCC 2023)** 9-12 July 2023 // Tunis, Tunisia

SCOPE AND MOTIVATION

