

"Exploration Japon 2024" Program

Optical Wireless Communications Research at LISV An Overview

Dr. Bastien Béchadergue

Université de Versailles Saint-Quentin Laboratoire d'Ingénierie des Systèmes de Versailles bastien.bechadergue@uvsq.fr

April 19, 2024, Nagoya University

- 1. UVSQ and Université Paris-Saclay
- **2. Overview of the LISV**
- 3. Vehicular communication activities
- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

1. UVSQ and Université Paris-Saclay

2. Overview of the LISV

- 3. Vehicular communication activities
- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

University of Versailles Saint-Quentin (UVSQ): Where Is It?

Near Paris and Versailles Castle

LISV: Laboratory of Engineering Systems

Key Figures of UVSQ

- Around 20,000 students
- 215 academic programs (including 100 Masters programs)
- 3,750 students enrolled in life-long learning programs
- 2,669 foreign students from 120 different countries
- 708 PhD students
- 155 research contracts
- 1,110 faculty members
- 744 administrative staff
- 310 students enrolled in exchange programs

UVSQ Is Now Part of Université Paris-Saclay

A common project to build the university of the 21st century

> Around 60,000 students

17 Graduate Schools in Université Paris-Saclay

17 Graduate Schools, 1 Institute, 3 fields of study

WHAT IS A GRADUATE

coordinates Master's programmes, doctoral schools and research topic or discipline by combining the expertises of university components, research organisations.

Short Course on VLC - Nagoya University

Laboratoire d'ingénierie

des systèmes de Versailles

UNIVERSITE PARIS-SACLAY

1. UVSQ and Université Paris-Saclay

2. Overview of the LISV

- 3. Vehicular communication activities
- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

History and Structure of the LISV

- The LISV exists since 2006:
 - About **30 professors/associate professors** and technical staff,
 - About 40 PhD students from more than 18 nationalities.
- Building located in Vélizy (mid-distance from Paris and Versailles), around 2700 m²
- Structured in **three teams**: **ISA**, RI and SyMRIC.
- Two structures are nearly associated with the Lab:
 - **OLEDCOMM**, a startup about LiFi technology
 - CEREMH, an association about healthcare and help for disabled persons

Scientific Aims of the LISV

Study, realization and performances evaluation of systems that include optomechanical-electronical-instrumentation parts

Laboratoire d'ingénierie des systèmes de Versailles

Research About Help and Assistance for Disabled Persons

Help for driving

Brain interfaces

Gyrolift Seagway with verticalization

Research About Mechatronic Robotised Systems

Prosthesis and orthosis

µrobotics

PhD Students

Thesis (average figures over 5 years period)

Sources of funding	Number	%
Government	5	7%
Funding with large collaboration with industry	22	30%
CIFRE (direct link with industry)	13	17%
Foreign funding with co-tutelle agreements	25	34%
Others	9	12%
TOTAL	74	100 %

Partnership Between LISV and OLEDCOMM

- About **OLEDCOMM**:
 - OWC and LiFi products design and industrialization company.
 - Created in 2012 by two Professors of LISV.
 - Now among the **world leaders** on this market with **pureLiFi** (UK) and **Signify** (NED).
 - Collaboration with MaxLinear and STMicroelectronics for on-chip embedded system.
- Since 2012, scientific collaboration agreement between LISV/UVSQ and OLEDCOMM for research related to various use cases and markets.
- Main markets:
 - Indoor LiFi with high privacy/security/health requirements (army, education...).
 - In-satellite cable replacement (first LiFi-embedded satellite lauched in 2023).
 - High speed and low costs satellite-to-satellite links.

- 1. UVSQ and Université Paris-Saclay
- **2. Overview of the LISV**

3. Vehicular communication activities

- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

Integrated V2V Sensing and Communication (2014 – 2017)

- 2009–2014: Work on V2V and I2V/V2I communication started at LISV in 2009 (thesis of A. M Cailean) → Demonstration of 100 m low bit rate (< 100 kbps) I2V links and 50 m V2V links.
- **2014–2017**: Thesis of B. Béchadergue to study **joint V2V communication and distance measurement** : •
 - Simulations validation of the proposed system.
 - **Experimental validation** using COTS car lights: distance measurement from 5 m to 25 m with a • measurement error < 3%.

15

20

s systèmes de Vor

25

INIVERSITE PARIS-SA

B. Béchadergue, "Visible Light Range-Finding and Communication Using the Automotive LED Lighting," PhD Thesis, Université Paris-Saclay, 2017.

Outdoor V2V Communication Tests (2017)

- In **2017**, research visit at **National Taiwan University**, with Hsin-Mu Tsai.
- V2V communication **demonstrator** assembled and tested on **open roads**.
- <u>Results</u>: > 90% of packets transmitted without errors over 30 m at 100 kbps (35 m à 10 kbps).

Multiple Access Protocols for V2V Communication (2019-2022)

- 2019–2022: Thesis of E. Plascencia on inter-vehicle interferences in multi-lanes scenarios.
- Study of the **performance/complexity tradeoff** of **various CDMA codes** (ROC, PN, OOC, etc.).
- Implementation of an integrated and real time 100 kbps V2V link and tests on a circuit.

Laboratoire d'ingénierie

des systèmes de Vara ille

INIVERSITĖ PARIS-SACL

L. E. Plascencia Cruz, "Visible light communication control in a platoon vehicle environment", PhD Thesis, Université Paris-Saclay, 2022.

- 1. UVSQ and Université Paris-Saclay
- **2. Overview of the LISV**
- 3. Vehicular communication activities
- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

Since 2016, an Interest for Indoor Applications

- 2016–2019: Thesis of M. Merah to initiate works on indoor applications (e.g. LiFi).
- Experimental work on modulations and multiples access schemes (m-CAP, OFDMA, NOMA, etc.)
- Demonstration of 300 Mbps capacity cells shared between up to 20 users using commercial white LEDs.

Laboratoire d'ingénierie

des systèmes de Vorsailles

UNIVERSITĖ PARIS-SACL

M. Mohammedi Merah, "Conception and realization of an indoor multi-user Light-Fidelity link", PhD Thesis, Université Paris-Saclay, 2019.

Since 2020, a Strong Focus on Beamsteering

- Motivations for using beamsteering:
 - In any OWC system, the larger SNR, the better.
 - The **main goal** of the OWC receiver is to optimize the SNR, and thus the **received signal power** *S*, defined as:

Tx

INIVERSITE PARIS-S

Interest of Beamsteering for Indoor Applications

Cell-based architecture:

- Each AP generates a cell
- If UE in the cell, communication possible
- Continuous coverage is ensured by cell overlapping (i.e. interference, handover...)

Proposed cell-free architecture:

- Each AP can target 1+ UEs using *beamsteering*
- Real-time tracking of UEs necessary
- Real-time optical beam orientation necessary
- Focused beam = secured and high SNR link

Interest of Beamsteering for Outdoor Applications

© ESA/D.Ducros - 2007

Strong interest for free-space optics (FSO) applications:

- Acquisition, tracking and pointing (ATP) mechanisms are critical to fight misalignement and maintain high performance.
- Use cases explored:
 - Buiding-to-building communication (Al-Furat Al-Awsat Technical University, Irak)
 - Satellite-to-satellite communications (OLEDCOMM & Thales)

Implement Beamsteering: Open Issues

- Issue 1: Is beamsteering really effective to enhance OWC performance?
 - Issue 2: How to localize the target?
- Issue 3: How to ensure actual beam orientation?

Performance Enhancement With Beamsteering: Approach

- **3 scenarios** studied to determine the OWC system **coverage** (i.e. area where BER < 3,8x10⁻³).
 - With *beamsteeering* \rightarrow Tx and Rx perfectly aligned,
 - Without *beamsteering* \rightarrow Tx pointing toward the floor, Rx toward the ceiling,
- AP = IR-LED source of optical power depending of the source directivity (= maximum optical power allowed by photobiological safety standard with this directivity).
- In beamsteering configuration, addition of misalignement between the AP and UE in a second step.

H. AL Satai, B. Béchadergue, L. Chassagne and W. M. Ridha Shakir, "Coverage Optimization With
 Beamsteering-Based Indoor Optical Wireless Communications," *2023 IEEE ICC*, 2023, pp. 1149-1154.

Performance Enhancement With Beamsteering: Results

- Conclusions:
 - Whathever the directivity, beamsteering enables a large increase in the communication coverage.
 - But, the more directive the source, the more sensitive the link to misalignement.

How to Localize the Target? Integrated Sensing and Communication

- **Objectives:** Model, build and evaluate a system for **joint** :
 - Lighting (except if IR source),
 - **Communication** (VLC),
 - **Positioning** (VLP).

- **Methodology:** We considered:
 - The use of **m-CAP** modulation and **RSS** positioning technique,
 - First through **simulations** and then **experimentally**.

Positioning Performance (Experimental Results)

- **Experimental** testbed developed.
- 90% of the positioning error < 5.9 cm
- Communication performance: BER < 3.8x10⁻³ over the whole 1.2 x 1.2 m zone.

How to Actually Steer the Optical Beam?

Technique	Operates by varying the	mainly with
Motorized gimbal	Orientation of the source/receiver	All types of sources and receivers.
Array of optical sources	Active optical source	Arrays of VCSEL/LED
Mobile mirrors (e.g. MEMS)	Mirrors position	Laser source or LED (of low divergence)
Delay lines with silicon photonics	Time/phase delays between copies of the same signal	Laser source
Lens with variable focal length	The focal length of a lens	Laser source or LED (of low divergence)
Reconfigurable intelligent surfaces (RIS)	Multiple working principles	Various types of sources and receivers.

Liquid Lenses for Cells of Variable Size

- By varying the liquid lens drive voltage, the focal distance changes.
 ⇒ So are the beam spot size and therefore the coverage area at a given distance.
- Cells of areas ranging from 6 mm² to 528 cm² over distances from 4 à 26 m demonstrated.
- Great interest for tracking before beamsteering and to fight misalignement.

Liquid Lenses for Beamsteering

- If the liquid lens is shifted from the source optical axis
 ⇒ Beam deflection is possible by varying the lens
 voltage.
- Deflection angle up to 13° demontrated.
- Angles > 70° possible with more complex setup (multiple lenses for abberation correction etc.).

- 1. UVSQ and Université Paris-Saclay
- 2. Overview of the LISV
- 3. Vehicular communication activities
- 4. Beamsteering activities
- 5. Other activities (SPAD, FSO...)

The Sensitivity/Size Tradeoff

Access point by Oledcomm

Several photodides (PD) are

commonly used to increase

the collected optical power...

User equipment by pureLiFi

ASIC optical antenna by Oledcomm

<image>

 ... but current off-the-shelf
 receivers too bulky for mass market applications Which solution to this issue? Single-photon avalanche diodes (SPADs)

Working Principles of a SPAD

- A SPAD transforms a **detected photon** into a **current pulse**.
- The number of pulses over a duration *T_s* is proportional to the received photon flux.
- <u>Problem</u> : After a photon detection, the SPAD cannot detect another photon over a certain dead time.

- <u>Solution</u> : Use instead a SPAD array, or silicon photomultiplier (SiPM) ⇒ Increase the probability of having at least one active SPAD at a given time instant.
- In practice, SiPM = 10000+ SPAD, spread over < 1 mm² ⇒ very small and sensitive sensor!

OWC Performance Optimization: SPAD vs PD

Question: Does a SiPM enable to enhance the OWC communication performance?

- <u>Principle</u> : Simulations, in similar conditions, of the communication coverage (i.e. zone where BER $< 3.8 \times 10^{-3}$) with state-of-the-art SiPM and PDs.
- <u>Results (in a 4x4 m room)</u>:
 - 0% of the room covered with a single PD of 26.4 mm².
 - Similar coverage (~50%) with a 0.625 mm² SiPM and a 105.8 mm² PD de surface 105.8 mm² (i.e. 66 time larfer!).
 - Room entirely covered with a SiPM smaller than 1.5 mm².

Conclusion: SiPMs ensure a significant increase in coverage area with a very small footprint.

Top view of the coverage areas ensured by various kinds of SiPMs and arrays of PDs.

B. Béchadergue, T. Cazimajou, F. Mandorlo, and F. Calmon, "Indoor Optical Wireless Communication
 Coverage Optimisation Using a SiPM Photoreceiver," *2023 IEEE WCNC*, 2023, pp. 1-6.

Energy Harvesting With Photovoltaic Modules

- **Question**: Is beamsteering interesting to enhance energy harvesting performance despite its own power cost?
- Ongoing work: Implementation of a simple simulation platform to estimate the energy harvested and BER of an OWC system with PV module as receiver and with(out) beamsteering.
- First results obtained without beamsteering. More results to come next.

Thanks For Your Attention

bastien.bechadergue@uvsq.fr

